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ABSTRACT: Potential of zero charge (PZC) is an important reference for
understanding the interface charge and structure at a given potential, and its difference
from the work function of metal surface (ΦM) is defined as the Volta potential
difference (ΔΦ). In this work, we model 11 metal/water interfaces with ab initio
molecular dynamics. Interestingly, we find ΔΦ is linearly correlated with the adsorption
energy of water (Eads) on the metal surface. It is revealed that the size of Eads directly
determines the coverage of chemisorbed water on the metal surface and accordingly
affects the interface potential change caused by electron redistribution (ΔΦel).
Moreover, ΔΦ is dominated by the electronic component ΔΦel with little orientational
dipole contributing, which explains the linear correlation between ΔΦ and Eads. Finally,
it is expected that this correlation can be helpful for effectively estimating the ΔΦel and
PZC of other metal surfaces in the future work.

Metal/water interfaces are typical places for energy
conversion between electricity and chemicals, in

which, electrocatalytic reactions, such as hydrogen evolution
reaction (HER),1−4 oxygen reduction reaction (ORR),5−8 and
CO2 reduction reaction (CO2RR)

9−12 occur. A fundamental
property of metal/water interfaces is the potential of zero
charge (PZC).13−16 This term was coined by Frumkin,15 and it
is defined as the potential at which the electrode surface bears
no net charge. Note that when the applied potential deviates
from PZC, the interfaces will start to build up electric double
layers. Therefore, PZC is the potential reference that can be
used to determine the sign and amount of the charge on the
metal surface at a given potential14,16 for electrochemical
interfaces. Moreover, knowing the value of PZC can be useful
to understand the pH effect on electrocatalysis. The difference
between the applied potential and PZC determines the
strength of electric field at the interface,17−20 which affects
significantly the dynamics of water reorganization and the
kinetics of proton transfer, and hence has impact on the
electrocatalytic activity. This understanding was recently used
by Koper and co-workers2 for explaining the activity difference
of HER in alkaline and acidic solution at Pt(111)/water
interfaces, and it is supported by the experimental observation
that lowering the PZC of Pt(111) by surface modification with
Ni(OH)2 effectively increases the HER activity in alkaline
solution.
In view of the importance of PZC, many methods have been

developed for determining PZC of metal/water interfaces.
Experimentally, PZC can be obtained by measuring the
maximum of surface tension,21 the Gouy−Chapman mini-
mum,22−24 the potential of maximum entropy,25 the amount of

excess charge on surface (e.g., CO-displacement method),14,16

and so on. Alternatively, PZC can be determined with
theoretical computation, and the advantage is that the clean
metal/water interfaces can be readily modeled in the absence
of contamination, while preparing a ultraclean single crystal
surface is a major difficulty for PZC measurement in
experiment. In the past few years, several groups26−31 have
reported that the experimental values of the PZC of a variety of
transition metal/water interfaces can be reproduced by
simulating all-atom interface models using ab initio molecular
dynamics (AIMD).
The PZC (UPZC) of a metal/water interface is closely related

to the work function of a metal surface (ΦM),
32 and as denoted

in Figure 1(a), UPZC and ΦM differ by a Volta potential
difference between the surface of metal and water (ΔΦ). ΔΦ
can also be interpreted as the change in ΦM by adding liquid
water onto a metal surface and can be measured by
experiment.34 It has been reported that ΔΦ is dependent on
the nature of the metal,33 and the value of ΔΦ is only −0.3 eV
for most sp metals, while for transition metals like Pt and Pd,
ΔΦ can be as large as −1 eV. Recently, Le, Cheng et al.26 have
shown that the ΔΦ for close-packed transition metal surfaces
are mainly attributable to the induced dipole (p) due to
electronic redistribution by water chemisorption, with little
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contribution from orientational dipole at the PZC. Since
chemisorbed water has a similar configuration (i.e., at top sites,
see Figure 1(a)) on metal surfaces, one would expect that there
may exist a correlation between ΔΦ and Eads, with the latter
relating to the chemisorption induced dipole.
By compiling ΔΦ from experimental data34−43 and Eads

computed in this work for 18 low Miller index metal surfaces
(see Table S1 and S2 in the Supporting Information), we
interestingly find ΔΦ has a good linear correlation with Eads as
shown in Figure 1(b). Note that the selected 18 metal surfaces
include typical sp, sd, and d metals, and thus this relationship is
likely to be universal for low Miller index metal surfaces. The
fitted analytical expression shown in Figure 1(b) indicates at
the weak adsorption limit (i.e., Eads = 0), ΔΦ would be close to
0, which is consistent with the previous finding that ΔΦ is
dominated by the electronic effect of water chemisorption.26 It
should be highlighted that this correlation offers an efficient
way for quantifying ΔΦ, which only requires simple
calculations of the adsorption energies in a vacuum, and
thereby help estimate the PZC for other metal surfaces.
To understand the linear correlation between ΔΦ and Eads

at the atomic level, we perform extensive AIMD simulations
for 11 neutral metal/water interfaces at PZC conditions,
including Pt(111), Pt(100), Pd(111), Cu(111), Cu(100),
Zn(0001), Ag(111), Au(111), Pb(111), Cu(110), and
Ag(110). Representative interface models are shown in Figure
2(a) and 2(b). As listed in Table 1, the corresponding
electrode potentials are calculated with the computational
standard hydrogen electrode (cSHE) method,26,33,44,45 which
is briefly explained in the Supporting Information. It is
encouraging to see that most computed PZC are in good
agreement with experimental values. While for a few metal
surfaces, e.g., Pt(100) and Pd(111), the computed PZC can
deviate by ∼0.5 V from experimental values. These errors are
inherited from the underestimation of the work function ΦM
with PBE-D3 functional, and using ΔΦ instead as the criteria
for judging the accuracy of the simulated interfaces indicates
that the standard PBE functional can well reproduce the
experimental values of ΔΦ. We think this is because the

standard density functional is sufficiently accurate in describing
the chemical interaction between water and the metal surface,
thus leading to accurate electron redistribution and induced
dipole, even though the work functions of some metal surfaces
are underestimated.
The Volta potential difference ΔΦ is often decomposed into

two parts for the sake of theoretical understanding, i.e., the
potential change caused by electron redistribution upon water
chemisorption (ΔΦel) and the potential change due to water
orientational dipole (ΔΦori).

26,32 We estimate ΔΦel from
electron redistribution profiles, and ΔΦori is computed by
subtracting ΔΦel from ΔΦ. Table 1 shows that ΔΦori has a
very small contribution (within 0.2 eV) to ΔΦ for all the
studied metal surfaces, which is supported by the dipole
orientation analysis shown in Figure 2(d) that the net
orientational dipole of interface water integrated along the
surface normal is close to zero. It should be noted that the
orientational dipoles of ordered water layer models (e.g., the
ice-like water bilayer), which are often used as simplified
models for representing interface water,46 can result in ΔΦori
of more than ±1 eV. This is significantly different from our
AIMD simulations, indicating that these simplified models of
interface water may be inappropriate for describing electro-
chemical interfaces at the PZC. In contrast to ΔΦori, the term
ΔΦel makes dominating contribution to ΔΦ for all computed
metal surfaces. Table 1 shows the magnitude of ΔΦel is
strongly dependent on the nature of the metal surface, ranging
from −0.2 eV to −1.3 eV (see Figure S6 for the convergence
analysis of ΔΦel), as also manifested by the amount of partial
electron transfer between water and metal surface shown in
Figure 2(e).
Considering the relationship between ΔΦel and chem-

isorbed water,26 the density distribution profiles ( H O2
ρ ) of

chemisorbed water at different metal surfaces are analyzed, as
shown in Figure 2(c). It is found that there is a distinct peak
on Pt(111), Pt(100), Pd(111), Cu(111), Cu(100), and
Cu(110) surfaces at z < 2.75 Å, which corresponds to the
layer of chemisorbed water at the interfaces, and this
assignment is supported by the orientation and density of

Figure 1. (a) The configurations of chemisorbed water on the metal surface in a vacuum and at the interface. Metal (i.e., Pt), H, O of chemisorbed
water, and O of other water are colored in silver, white, purple, and red, respectively. The chemisorbed water is highlighted with the ball-and-stick
model in comparison to other water with the line model. Eads denotes for the adsorption energy of water on metal surface, and UPZC

abs , ΦM, and ΔΦ
represent the PZC at the absolute scale, the work function, and the Volta potential difference between the surface of metal and water, respectively.
(b) The data points of ΔΦ as a function of Eads for 18 metal surfaces, fitted with a dotted line. The sp, sd, and d metals are marked in diamonds,
squares, and circles, respectively. ΔΦ are obtained from experimental data,34−43 and Eads are calculated in this work.
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states (DOS) analysis of these water molecules in Figures S7
and S8. In contrast, this peak is not obvious on Zn(0001),
Ag(111), Ag(110), Au(111), and Pb(111) surfaces since the

water adsorption energies on these surfaces are very low
(>−0.32 eV) and surface water tends to form hydrogen bonds
with other water molecules. Nevertheless, there is still a small

Figure 2. (a), (b) Models of the Pt(111)/water and Cu(110)/water interfaces. Pt, Cu, O, and H are colored in gray, brown, red, and white,
respectively. The O atoms of chemisorbed water are highlighted in purple. (c)−(e) Distribution profiles of water density ( H O2

ρ ), dipole orientation

( H O2
ρ cos ψ, and electron density difference (Δρe) along the surface normal (z-coordinate) at different metal/water interfaces. Δρe is calculated as

Δρe = ρe(i) − ρe(M) − ρe(w), where ρe(i), ρe(M), and ρe(w) denote the electron densities of the metal/water interface and metal and water
separately, respectively. The zero in the z-coordinate corresponds to the uppermost layers of metal surfaces. The regions of chemisorbed water are
indicated by a blue block in (c).

Table 1. Computed PZC vs SHE (UPZC
SHE) and Work Functions (ΦM) of 11 Metal Surfacesa

surface UPZC
SHE ΦM/eV ΔΦ/eV ΔΦel/eV ΔΦori/eV

Pt(111) 0.2(0.3) 5.8(5.9) −1.2(−1.2) −1.3 0.1
Pt(100) −0.1(0.3) 5.5(5.8) −1.1(−1.1) −1.2 0.1
Pd(111) −0.5(0.1) 5.1(5.6) −1.2(−1.1) −1 −0.2
Cu(111) −0.3(−0.7 ∼ −0.2) 5.3(4.9) −1.1(−1.2 ∼ −0.7) −1.0 −0.1
Cu(100) −0.8(−0.7) 4.5(4.6) −0.9(−0.9) −0.8 −0.1
Zn(0001) −0.9(−0.9) 4.4 −0.9 −0.7 −0.2
Ag(111) −0.6(−0.5) 4.7(4.8) −0.8(−0.7) −0.7 −0.1
Au(111) 0.5(0.5) 5.4(5.4) −0.5(−0.5) −0.5 0
Pb(111) −0.9(−0.6) 3.9 −0.4 −0.2 −0.2
Cu(110) −0.9(−0.8) 4.6(4.5−4.9) −1.1(−0.9 ∼ −1.3) −1.2 0.1
Ag(110) −1.1(−0.7) 4(4.5) −0.6(−0.8) −0.8 0.2

aΔΦ is the Volta potential difference between the surface of metal and water, and it can be decomposed into the change of interfacial potential
from water orientation ΔΦori and electron redistribution ΔΦel. The data in the parentheses are recommended experimental values.34−43
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fraction of surface water chemisorbed on these metal surfaces,
giving rise to the tails at z < 2.75 Å in the water density profiles
on these metal surfaces. It should be mentioned that for two
open surfaces, i.e., Cu(110) and Ag(110), a large fraction of
water molecules distributed in the z < 2.75 Å region are not
chemisorbed, which orient with one O−H bond pointing
toward the metal surface and can be seen in the representative
configuration shown in Figure 2(b). These water molecules
have been excluded in counting for the coverage of
chemisorbed water on metal surfaces.
Figure 3 plots the correlations of the computed ΔΦ, ΔΦel,

and surface coverage of chemisorbed water (θA, the

convergence of θA can be found in Figure S9) with Eads.
Note that θA in this work is defined as the number of
chemisorbed water per unit area, rather than that per
adsorption site often used,19 because the former is of more
relevance to the present study. It can be seen from Figure 3(a)
that since our computed ΔΦ values are very close to
experimental results, computed ΔΦ has a similar linear
correlation with Eads (see also Figure 1(b)). Furthermore,
ΔΦel is also proportional to Eads, as shown in Figure 3(b),
because ΔΦori has negligible contribution to the interface
potential.

It is also interesting to note from Figure 3(c) that the
coverage of chemisorbed water θA linearly correlates with the
adsorption energy Eads, as one would expect from an
adsorption isotherm at the intermediate coverage region.19,47

On the other hand, the magnitude of the induced dipole p is
less sensitive to the nature of the metal surface. As shown in
Figure S10, the values of the computed p are very close (i.e.,
−0.1 to −0.15 eÅ) on metal surfaces in a vacuum. Since ΔΦel
is proportional to p·θA, it is clear that the linear dependency of
θA on Eads is the main reason for the linear correlation between
ΔΦel and Eads.
Thus, our work clearly shows there is a good linear

relationship between ΔΦ and Eads, and moreover, this
correlation should stem from the fact that the electronic
component ΔΦel linearly correlates with Eads while the
orientational component ΔΦori has a negligible contribution
to ΔΦ. We demonstrate that this correlation is rather universal
for metal−water interfaces and may be even transferable to
other solid/liquid interfaces for understanding their corre-
sponding PZC and band alignment.
In summary, we collect the experimental values of PZC and

work functions of 18 metal surfaces and find that there is a
linear correlation between the Volta potential difference ΔΦ
and water adsorption energy Eads. We then simulate 11 metal/
water interfaces at the PZC conditions using AIMD and
compute their PZC with respect to SHE at good accuracy, thus
confirming the linear correlation between ΔΦ and Eads.
Detailed analyses indicate that this relation can be attributable
to the fact that stronger adsorption of water leads to higher
coverage of chemisorbed water at the PZC, and thus greater
electronic dipole potential ΔΦel, while the orientational dipole
of interface water is insignificant for all computed metal
surfaces at the PZC. Finally, the observed linear correlation
between Eads and ΔΦ can offer an efficient way to estimate the
PZC of other metal surfaces. With proper further treatment, it
may be even possible to extend this relation to metal alloys,
which may be useful to help design alloy electrocatalysts with
favorable PZC.
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