

AI²MD (Artificial Intelligence × Ab Initio Molecular Dynamics) Simulation of Electrochemical Interfaces: Methods and Applications

Jia-Xin Zhu¹, Jun Cheng^{1,2,3}

- 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- 2. Laboratory of AI for Electrochemistry (AI4EC), IKKEM, Xiamen 361005, China
- 3. Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China

WHY we need Al²MD for EC studies

While *ab initio* simulations have provided valuable **microscopic** insights into EC interfaces, the high computational cost limits their use in tackling complex systems. Machine learning potentials offer a solution, but their application in electrochemistry remains challenging due to the difficulty in treating the dielectric response of electronic conductors and insulators simultaneously...

ID for EC interfaces

Electrolyte

Zhang, Car, et al. JCP 2022 ✓ Reorientational response

Ko, Behler, et al. Nat. Commun. 2021 XNon-local elec. dielectric response

Electrode

XOverestimate polarisability

HOW we achieve Al²MD

Therefore, we propose a **hybrid scheme** of MLPs to treat electrochemical interfaces (ec-MLP):

Wannier centroid (WC) method for electrolytes (ionic conductor & electronic insulator)

Polarisable electrode method for electrodes (ionic insulator & electronic conductor)

- **Chemical potential**
- Local environment

attractive

interaction

ion - surface

WHAT we can obtain from Al²MD

- **Potential-dependent water ad-/de-sorption**
- **Bell-shaped Helmholtz capacitance** (which requires accurate descriptions of electronic structures!)
- **Chemisorption induces additional dipoles Physisorption lower dipole due to lower HB** number

Ojha, Doblhoff-Dier, Koper, PNAS 2022

Ledezma-Yanez et al., Nat. Ener. 2017

J.-X. Zhu* and J. Cheng*, submitted, arXiv:2407.17740. E-mail: jiaxinzhu@stu.xmu.edu.cn, chengjun@xmu.edu.cn